PUBLICATION     NeurIPS'24

An Efficient Recipe for Long Context Extension via Middle-Focused Positional Encoding

Tong Wu, Yanpeng Zhao, and Zilong Zheng#

NeurIPS  ·  2024   ·  arXiv: arxiv.org/abs/2406.07138v1


Abstract

Recently, many methods have been developed to extend the context length of pre-trained large language models (LLMs), but they often require fine-tuning at the target length (» 4K) and struggle to effectively utilize information from the middle part of the context. To address these issues, we propose Continuity-Relativity indExing with gAussian Middle (CREAM), which interpolates positional encodings by manipulating position indices. Apart from being simple, CREAM is training-efficient: it only requires fine-tuning at the pre-trained context window (e.g., Llama 2-4K) and can extend LLMs to a much longer target context length (e.g., 256K). To ensure that the model focuses more on the information in the middle, we introduce a truncated Gaussian to encourage sampling from the middle part of the context during fine-tuning, thus alleviating the “Lost-in-the-Middle” problem faced by long-context LLMs. Experimental results show that CREAM successfully extends LLMs to the target length for both Base and Chat versions of Llama2-7B with “Never Miss A Beat”.




Citation

@inproceedings{wu2024cream,
    title={An Efficient Recipe for Long Context Extension via Middle-Focused Positional Encoding},
    author={Tong Wu, Yanpeng Zhao, Zilong Zheng},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
    volume = {37},
    year={2024}
}